
The animation Package
June 20, 2008

Type Package

Title Demonstrate Animations in Statistics

Version 1.0-1

Date 2008-06-20

Author Yihui Xie

Maintainer Yihui Xie <xieyihui@gmail.com>

Description This package consists of various functions for animations in statistics, covering many
areas such as probability theory, mathematical statistics, multivariate statistics, nonparametric
statistics, sampling survey, linear models, time series, computational statistics, data mining and
machine learning. These functions might be of help in teaching statistics and data analysis.

Depends MASS

License GPL-2 | GPL-3

URL http://animation.yihui.name

R topics documented:
ani.news . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ani.options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ani.start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ani.stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
animation-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
bisection.method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
boot.iid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
brownian.motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
buffon.needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
clt.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
conf.int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
cv.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
cv.nfeaturesLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



2 ani.news

flip.coin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
grad.desc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
highlight.def . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
kfcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
kmeans.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
knn.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
lln.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
mwar.ani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
newton.method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
pageview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
sample.cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
sample.simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
sample.strat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
sample.system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
saveMovie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
saveSWF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
tidy.source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
vi.grid.illusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
vi.lilac.chaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
write.rss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Index 54

ani.news Read news of package ‘animation’

Description

Read news and changes in the package ‘animation’.

Usage

ani.news(...)

Arguments

... arguments passed to file.show.

Details

This function just makes use of file.show to display a file ‘NEWS’ in this package.

Value

None (invisible ‘NULL’).

Author(s)

Yihui Xie
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See Also

file.show

Examples

ani.news()

ani.options Set or Query Animation Parameters

Description

Set or query various parameters that control the behaviour of the animation, such as time interval,
maximum frames, height and width, etc. This function is based on options to set an option ani
which is a list containing the animation parameters.

Usage

ani.options(...)

Arguments

... arguments in tag = value form, or a list of tagged values. The tags must
come from the animation parameters described below.

Value

a list containing the options.

When parameters are set, their former values are returned in an invisible named list. Such a list can
be passed as an argument to ani.options to restore the parameter values.

Animation Parameters

interval a positive number to set the time interval of the animation (unit in seconds).

nmax maximum number of steps for a loop (e.g. iterations) to create animation frames. Note: the actual
number of frames can be less than this number, depending on specific animations.

ani.width, ani.height width and height of image frames (unit in px); see graphics devices like png, jpeg,
...

outdir character: specify the output dir if we want to create HTML animation pages; default to be
tempdir.

filename character: name of the target HTML main file

withprompt character: prompt to display while using ani.start (restore with ani.stop)
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ani.type character: image format for animation frames, e.g. png, jpg, ...

ani.dev function: the graphics device; e.g. (png, jpeg, ...)

title character: the title of animation

description character: a description about the animation

footer logical: if TRUE, write a foot part in the HTML page containing information such as date/time of
creation; else don’t write.

autobrowse logical: whether auto-browse the animation page immediately after it is created?

Note

Please note that nmax is usually equal to the number of animation frames (e.g. for brownian.motion)
but not always! The reason is that sometimes there are more than one frame recorded in a single step
of a loop, for instance, there are 2 frames generated in each step of kmeans.ani, and 4 frames in
knn.ani, etc.

This function can be used for almost all the animation functions such as brownian.motion,
boot.iid, buffon.needle, cv.ani, flip.coin, kmeans.ani, knn.ani, etc. All the
parameters will affect the behaviour of HTML animations, but only interval will affect anima-
tions in windows graphics device.

Author(s)

Yihui Xie

References

http://animation.yihui.name/animation:options

See Also

options

Examples

## Not run:
# store the old option to restore it later
oopt = ani.options(interval = 0.05, nmax = 100, ani.dev = png, ani.type = "png")
ani.start()
opar = par(mar = c(3, 3, 2, 0.5), mgp = c(2, .5, 0), tcl = -0.3,

cex.axis = 0.8, cex.lab = 0.8, cex.main = 1)
brownian.motion( pch = 21, cex = 5, col = "red", bg = "yellow",

main = "Demonstration of Brownian Motion",)
par(opar)
ani.stop()
ani.options(oopt)
## End(Not run)

http://animation.yihui.name/animation:options
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ani.start Start the generation of an HTML animation page

Description

Copy JavaScript file ‘FUN.js’ and CSS file ‘ANI.css’ to the same directory as the HTML animation
page, create a directory ‘images’ and open a graphics device in this directory (the device is specified
as ani.dev in ani.options). The prompt of the current R session is modified (by default
ANI> ).

Usage

ani.start(...)

Arguments

... arguments passed to ani.options to set animation parameters

Value

None (invisible ‘NULL’).

Note

After calling ani.start, either animation functions in this package or R script of your own can
be used to generate & save animated pictures using proper graphics devices (specified as ani.dev
in ani.options), then watch your animation by ani.stop().

Note that former image files in the directory ‘images’ will be removed.

Author(s)

Yihui Xie

References

http://animation.yihui.name/animation:create_html_animation_page

See Also

ani.options, ani.stop

http://animation.yihui.name/animation:create_html_animation_page
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Examples

## Not run:

# save the animation in HTML pages and auto-browse it
ani.options(ani.width = 600, ani.height = 500, interval = 0.2)
ani.start()
boot.iid()
ani.stop()

## End(Not run)

ani.stop Write the HTML animation page

Description

Write the HTML animation page, restore previous options such as prompt and close the graphical
device opened in ani.start.

Usage

ani.stop()

Value

None (invisible ‘NULL’); a string will be printed in the console indicating where is the HTML file.

Note

The content of the HTML file completely depends on the parameters set in ani.options.

Author(s)

Yihui Xie

References

http://animation.yihui.name/animation:create_html_animation_page

See Also

ani.options, ani.start

http://animation.yihui.name/animation:create_html_animation_page
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Examples

## Not run:

# save the animation in HTML pages and auto-browse it
ani.options(ani.width = 600, ani.height = 500, interval = 0.2)
ani.start()
boot.iid()
ani.stop()

## End(Not run)

animation-package Statistical Animations Using R

Description

Various functions for animations in statistics which could probably aid in teaching statistics and
data analysis.

Details

Package: animation
Type: Package
Version: 1.0
Date: 2008-06-20
License: GPL-2 | GPL-3

This package mainly makes use of HTML & JavaScript and R windows graphics devices (such
as x11) to demonstrate animations in statistics; other kinds of output such as Flash (SWF) or
GIF/MPG animations are also available if necessary software has been installed.

Author(s)

Yihui Xie <http://www.yihui.name>

References

AniWiki: Animations in Statistics http://animation.yihui.name; created and maintained
by Yihui Xie

Examples

## Not run:
#############################################################
# (1) Animations in HTML pages
# create an animation page in the tempdir() and auto-browse it
# Brownian Motion

http://www.yihui.name
http://animation.yihui.name
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oopt = ani.options(interval = 0.05, nmax = 100, ani.dev = png,
ani.type = "png",
title = "Demonstration of Brownian Motion",
description = "Random walk on the 2D plane: for each point
(x, y), x = x + rnorm(1) and y = y + rnorm(1).")

ani.start()
opar = par(mar = c(3, 3, 2, 0.5), mgp = c(2, .5, 0), tcl = -0.3,

cex.axis = 0.8, cex.lab = 0.8, cex.main = 1)
brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow",

main = "Demonstration of Brownian Motion",)
par(opar)
ani.stop()
ani.options(oopt)

#############################################################
# (2) Animations inside R windows graphics devices
# Bootstrapping
oopt = ani.options(interval = 0.3, nmax = 50)
boot.iid()
ani.options(oopt)

#############################################################
# (3) GIF animations
oopt = ani.options(interval = 0, nmax = 100)
saveMovie(brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow"),

interval = 0.05, outdir = getwd(), width = 600, height = 600)
ani.options(oopt)

#############################################################
# (4) Flash animations
oopt = ani.options(nmax = 100, interval = 0)
saveSWF(buffon.needle(type = "S"), para = list(mar = c(3, 2.5, 1, 0.2),

pch = 20, mgp = c(1.5, 0.5, 0)), dev = "pdf", swfname = "buffon.swf",
outdir = getwd(), interval = 0.1)

ani.options(oopt)
## End(Not run)

bisection.method Demonstration of the Bisection Method for Root-finding on an Interval

Description

In mathematics, the bisection method is a root-finding algorithm which works by repeatedly divid-
ing an interval in half and then selecting the subinterval in which a root exists. This function gives
a visual demonstration of this process of finding the root of an equation f(x) = 0.

Usage

bisection.method(FUN = function(x) x^2 - 4, rg = c(-1, 10), tol = 0.001,
interact = FALSE, main, xlab, ylab, ...)
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Arguments

FUN the function in the equation to solve (univariate)

rg a vector containing the end-points of the interval to be searched for the root; in
a c(a, b) form

tol the desired accuracy (convergence tolerance)

interact logical; whether choose the end-points by cliking on the curve (for two times)
directly?

xlab, ylab, main
axis and main titles to be used in the plot

... other arguments passed to curve

Details

Suppose we want to solve the equation f(x) = 0. Given two points a and b such that f(a) and f(b)
have opposite signs, we know by the intermediate value theorem that f must have at least one root
in the interval [a, b] as long as f is continuous on this interval. The bisection method divides the
interval in two by computing c = (a + b)/2. There are now two possibilities: either f(a) and f(c)
have opposite signs, or f(c) and f(b) have opposite signs. The bisection algorithm is then applied
recursively to the sub-interval where the sign change occurs.

During the process of searching, the mid-point of subintervals are annotated in the graph by both
texts and blue straight lines, and the end-points are denoted in dashed red lines. The root of each
iteration is also plotted in the right margin of the graph.

Value

A list containing

root the root found by the algorithm

value the value of FUN(root)

iter number of iterations; if it is equal to ani.options(’nmax’), it’s quite
likely that the root is not reliable because the maximum number of iterations
has been reached

Author(s)

Yihui Xie

References

http://en.wikipedia.org/wiki/Bisection_method

http://animation.yihui.name/compstat:bisection_method

See Also

deriv, uniroot

http://en.wikipedia.org/wiki/Bisection_method
http://animation.yihui.name/compstat:bisection_method
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Examples

# default example
xx = bisection.method()
xx$root # solution

## Not run:

# a cubic curve
f = function(x) x^3 - 7 * x - 10
xx = bisection.method(f, c(-3, 5))
# interaction: use your mouse to select the end-points
bisection.method(f, c(-3, 5), interact = TRUE)

# HTML animation pages
ani.start(nmax = 50, ani.height = 400, ani.width = 600, interval = 1,

title = "The Bisection Method for Root-finding on an Interval",
description = "The bisection method is a root-finding algorithm
which works by repeatedly dividing an interval in half and then
selecting the subinterval in which a root exists.")

par(mar = c(4, 4, 1, 2))
bisection.method(main = "")
ani.stop()

## End(Not run)

boot.iid Bootstrapping the i.i.d data

Description

Demonstrate bootstrapping for i.i.d data: use a sunflower scatter plot to illustrate the results of
sampling, and a histogram to show the distribution of the statistic of interest.

Usage

boot.iid(x = runif(20), statistic = mean, m = length(x),
mat = matrix(1:2, 2), widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)),
col = c("black", "red", "bisque", "red", "gray"),
cex = c(1.5, 0.8),
main = c("Bootstrapping the i.i.d data", "Density of bootstrap estimates"),
...)

Arguments

x a numerical vector (the original data).

statistic A function which returns a value of the statistic of interest when applied to the
data x.
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m the sample size for bootstrapping (m-out-of-n bootstrap)

mat, widths, heights
arguments passed to layout to set the layout of the two graphs

col a character vector of length 5 specifying the colors of: points of original data,
points for the sunflowerplot, rectangles of the histogram, the density line, and
the rug.

cex a numeric vector of length 2: magnification of original data points and the sun-
flowerplot points.

main a character vector of length 2: the main titles of the two graphs.

... other arguments passed to sunflowerplot

Details

This is actually a very naive version of bootstrapping but may be useful for novices. By default, the
circles denote the original dataset, while the red sunflowers (probably) with leaves denote the points
being resampled; the number of leaves just means how many times these points are resampled, as
bootstrap samples with replacement.

The whole process has illustrated the steps of resampling, computing the statistic and plotting its
distribution based on bootstrapping.

Value

A list containing

t0 The observed value of ’statistic’ applied to ’x’.

tstar Bootstrap versions of the ’statistic’.

Author(s)

Yihui Xie

References

There are many references explaining the bootstrap and its variations. For a relatively complete
one, you may just refer to:

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman & Hall.

http://animation.yihui.name/dmml:bootstrap_i.i.d

See Also

sunflowerplot

http://animation.yihui.name/dmml:bootstrap_i.i.d
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Examples

# bootstrap for 20 random numbers from U(0, 1)
opar = par(mar = c(1.5, 3, 1, 0.1), cex.lab = 0.8, cex.axis = 0.8,

mgp = c(2, 0.5, 0), tcl = -0.3)
oopt = ani.options(interval = 0.5, nmax = 40)
# don't want the titles
boot.iid(main = c("", ""))

# for the median of 15 points from chi-square(5)
boot.iid(x = rchisq(15, 5), statistic = median, main = c("", ""))

# change the layout; or you may try 'mat = matrix(1:2, 1)'
par(mar = c(1.5, 3, 2.5, 0.1), cex.main = 1)
boot.iid(heights = c(1, 2))

par(opar)

## Not run:

# save the animation in HTML pages
ani.options(ani.height = 500, ani.width = 600, outdir = getwd(),

title = "Bootstrapping the i.i.d data",
description = "This is a naive version of bootstrapping but
may be useful for novices.")

ani.start()
par(mar = c(2.5, 4, 0.5, 0.5))
boot.iid(main = c("", ""), heights = c(1, 2))
ani.stop()

## End(Not run)

ani.options(oopt)

brownian.motion Demonstration of Brownian motion on the 2D plane

Description

Demonstrate Brownian motion (random walk) in a 2D scatterplot.

Usage

brownian.motion(n = 10, xlim = c(-20, 20), ylim = c(-20, 20), ...)

Arguments

n Number of points in the scatterplot
xlim, ylim Arguments passed to plot.default to control the apperance of the scatter-

plot (title, points, etc), see points for details.
... other arguments passed to plot.default
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Details

Brownian motion, or random walk, can be regarded as the trace of some cumulative normal random
numbers: the location of the next step is just “current location + random Gaussian numbers”, i.e.,

xk+1 = xk + rnorm(1); yk+1 = yk + rnorm(1)

where (x, y) stands for the location of a point.

Value

None (invisible ‘NULL’).

Author(s)

Yihui Xie

References

http://animation.yihui.name/prob:brownian_motion

See Also

rnorm

Examples

# show an animation in (Windows/X Window...) a graphics device
# unless you have opened an invisible device like png(), pdf(), ...
oopt = ani.options(interval = 0.05, nmax = 150)
brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow",

main = "Demonstration of Brownian Motion")
ani.options(oopt)

## Not run:
# create an HTML animation page
# store the old option to restore it later
oopt = ani.options(interval = 0.05, nmax = 100, ani.dev = png,

ani.type = "png",
title = "Demonstration of Brownian Motion",
description = "Random walk on the 2D plane: for each point
(x, y), x = x + rnorm(1) and y = y + rnorm(1).")

ani.start()
opar = par(mar = c(3, 3, 1, 0.5), mgp = c(2, .5, 0), tcl = -0.3,

cex.axis = 0.8, cex.lab = 0.8, cex.main = 1)
brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow")
par(opar)
ani.stop()
## End(Not run)
ani.options(oopt)

http://animation.yihui.name/prob:brownian_motion
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buffon.needle Simulation of Buffon’s Needle

Description

This function provides a simulation for the problem of Buffon’s Needle, which is one of the oldest
problems in the field of geometrical probability. ‘Needles’ are denoted by segments on the 2D
plane, and dropped randomly to check whether they cross the parallel lines. Through many times
of ‘dropping’ needles, the approximate value of π can be calculated out.

Usage

buffon.needle(l = 0.8, d = 1, redraw = TRUE, mat = matrix(c(1, 3, 2, 3), 2),
heights = c(3, 2), col = c("lightgray", "red", "gray", "red", "blue",
"black", "red"), expand = 0.4, type = "l", ...)

Arguments

l numerical. length of the needle; shorter than d.

d numerical. distances between lines; it should be longer than l.

redraw logical. redraw former ‘needles’ or not for each drop.

mat, heights arguments passed to layout to set the layout of the three graphs.

col a character vector of length 7 specifying the colors of: background of the area
between parallel lines, the needles, the sin curve, points below / above the sin
curve, estimated π values, and the true π value.

expand a numerical value defining the expanding range of the y-axis when plotting the
estimated π values: the ylim will be (1 +/- expand) * pi.

type an argument passed to plot when plotting the estimated π values (default to be
lines).

... other arguments passed to plot when plotting the values of estimated π.

Details

This is quite an old problem in probability. For mathematical background, please refer to http://
en.wikipedia.org/wiki/Buffon’s_needle or http://www.mste.uiuc.edu/reese/
buffon/buffon.html.

There are three graphs made in each step: the top-left one is a simulation of the scenario, the top-
right one is to help us understand the connection between dropping needles and the mathematical
method to estimate π, and the bottom one is the result for each dropping.

Value

The values of estimated π are returned as a numerical vector (of length nmax).

http://en.wikipedia.org/wiki/Buffon's_needle
http://en.wikipedia.org/wiki/Buffon's_needle
http://www.mste.uiuc.edu/reese/buffon/buffon.html
http://www.mste.uiuc.edu/reese/buffon/buffon.html
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Note

Note that redraw will affect the speed of the simulation (animation) to a great deal if the control
argument nmax (in ani.options) is quite large, so you’d better specify it as FALSE when doing
a large amount of simulations.

Author(s)

Yihui Xie

References

Ramaley, J. F. (Oct 1969). Buffon’s Noodle Problem. The American Mathematical Monthly 76 (8):
916-918.

http://animation.yihui.name/prob:buffon_s_needle

Examples

# it takes several seconds if 'redraw = TRUE'
oopt = ani.options(nmax = 500, interval = 0)
opar = par(mar = c(3, 2.5, 0.5, 0.2), pch = 20, mgp = c(1.5, 0.5, 0))
buffon.needle()

# this will be faster
buffon.needle(redraw = FALSE)

par(opar)
## Not run:

# create HTML animation page
ani.options(nmax = 100, interval = 0.1, ani.height = 500, ani.width = 600,

outdir = getwd(), title = "Simulation of Buffon's Needle",
description = "There are three graphs made in each step: the top-left
one is a simulation of the scenario, the top-right one is to help us
understand the connection between dropping needles and the mathematical
method to estimate pi, and the bottom one is the result for each
dropping.")

ani.start()
par(mar = c(3, 2.5, 1, 0.2), pch = 20, mgp = c(1.5, 0.5, 0))
buffon.needle(type = "S")
ani.stop()

## End(Not run)

ani.options(oopt)

http://animation.yihui.name/prob:buffon_s_needle
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clt.ani Demonstration of the Central Limit Theorem

Description

First of all, a number of obs observations are generated from a certain distribution for each variable
Xj , j = 1, 2, · · · , n, and n = 1, 2, · · · , nmax, then the sample means are computed, and at last the
density of these sample means is plotted as the sample size n increases, besides, the p-values from
the normality test shapiro.test are computed for each n and plotted at the same time.

Usage

clt.ani(obs = 300, FUN = rexp, col = c("bisque", "red", "black"),
mat = matrix(1:2, 2), widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)), ...)

Arguments

obs the number of sample points to be generated from the distribution

FUN the function to generate n random numbers from a certain distribution

col a vector of length 2 specifying the colors of the histogram and the density line
mat, widths, heights

arguments passed to layout to set the layout of the two graphs.

... other arguments passed to hist

Details

As long as the conditions of the Central Limit Theorem (CLT) are satisfied, the distribution of
the sample mean will be approximate to the Normal distribution when the sample size n is large
enough, no matter what is the original distribution. The largest sample size is defined by nmax in
ani.options.

Value

None.

Author(s)

Yihui Xie

References

E. L. Lehmann, Elements of Large-Sample Theory. Springer-Verlag, New York, 1999.

http://animation.yihui.name/prob:central_limit_theorem

http://animation.yihui.name/prob:central_limit_theorem
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See Also

hist, density

Examples

oopt = ani.options(interval = 0.1, nmax = 150)
op = par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0), tcl = -0.3)
clt.ani(type = "s")
par(op)

## Not run:

# HTML animation page
ani.options(ani.height = 500, ani.width = 600, outdir = getwd(), nmax = 100,

interval = 0.1, title = "Demonstration of the Central Limit Theorem",
description = "This animation shows the distribution of the sample
mean as the sample size grows.")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0), tcl = -0.3)
clt.ani(type = "h")
ani.stop()
## End(Not run)
ani.options(oopt)

# other distributions: Chi-square with df = 5
f = function(n) rchisq(n, 5)
clt.ani(FUN = f)

conf.int Demonstration of Confidence Intervals

Description

This function gives a demonstration of the concept of confidence intervals in mathematical statistics
in this way: keep on drawing samples from the Normal distribution N(0, 1), computing the intervals
based on a given confidence level and plotting them as segments in a graph. In the end, we may
check the coverage rate against the given confidence level.

Usage

conf.int(level = 0.95, size = 50, cl = c("red", "gray"), ...)

Arguments

level the confidence level (1 − α), e.g. 0.95

size the sample size for drawing samples from N(0, 1)
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cl two different colors to annotate whether the confidence intervals cover the true
mean (cl[1]: yes; cl[2]: no)

... other arguments passed to plot

Details

Intervals that cover the true parameter are denoted in color cl[2], otherwise in color cl[1]. Each
time we draw a sample, we can compute the corresponding confidence interval. As the process of
drawing samples goes on, there will be a legend indicating the numbers of the two kinds of intervals
respectively and the coverage rate is also denoted in the top-left of the plot.

The argument nmax in ani.options controls the maximum times of drawing samples.

Value

A list containing

level confidence level

size sample size

CI a matrix of confidence intervals for each sample

CR coverage rate

Author(s)

Yihui Xie

References

George Casella and Roger L. Berger. Statistical Inference. Duxbury Press, 2th edition, 2001.

http://animation.yihui.name/mathstat:confidence_interval

Examples

oopt = ani.options(interval = 0.1, nmax = 100)
# 90% interval
conf.int(0.90, main = "Demonstration of Confidence Intervals")

## Not run:

# save the animation in HTML pages
ani.options(ani.height = 400, ani.width = 600, outdir = getwd(), nmax = 100,

interval = 0.15, title = "Demonstration of Confidence Intervals",
description = "This animation shows the concept of the confidence
interval which depends on the observations: if the samples change,
the interval changes too. At last we can see that the coverage rate
will be approximate to the confidence level.")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0), tcl = -0.3)
conf.int()
ani.stop()

http://animation.yihui.name/mathstat:confidence_interval
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## End(Not run)
ani.options(oopt)

cv.ani Demonstration for the process of cross-validation

Description

Simply speaking, the process of cross-validation is just to split the whole data set into several parts
and select one part as the test set and the rest parts as the training set. This function uses rectangles
to illustrate these ‘parts’ and mark the test set & the training set with different colors.

Usage

cv.ani(x = runif(150), k = 10, col = c("green", "red", "blue"),
pch = c(4, 1), ...)

Arguments

x a numerical vector which stands for the sample points.

k an integer: how many parts should we split the data into? (comes from the k-fold
cross-validation.)

col a character vector of length 3 specifying the colors of: the rectangle representing
the test set, the points of the test set, and points of the training set.

pch a numeric vector of length 2 specifying the symbols of the test set and training
set respectively.

... other arguments passed to plot

Details

The computation of sample sizes is base on kfcv.

Value

None (invisible ‘NULL’).

Note

For the ‘leave-one-out’ cross-validation, just specify k as length(x), then the rectangles will
‘shrink’ into single lines.

The final number of animation frames is the smaller one of nmax and k.

This function has nothing to do with specific models used in cross-validation.

Author(s)

Yihui Xie
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References

http://animation.yihui.name/dmml:k-fold_cross-validation

See Also

kfcv

Examples

oopt = ani.options(interval = 2, nmax = 10)
cv.ani(main = "Demonstration of the k-fold Cross Validation", bty = "l")

# leave-one-out CV
cv.ani(x = runif(15), k = 15)

## Not run:

# save the animation in HTML pages
ani.options(ani.height = 400, ani.width = 600, outdir = getwd(), interval = 2,

nmax = 10, title = "Demonstration of the k-fold Cross Validation",
description = "This is a naive demonstration for the k-fold cross
validation. The k rectangles in the plot denote the k folds of data.
Each time a fold will be used as the test set and the rest parts
as the training set.")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0), tcl = -0.3)
cv.ani(bty = "l")
ani.stop()

## End(Not run)
ani.options(oopt)

cv.nfeaturesLDA Cross-validation to find the optimum number of features (variables) in
LDA

Description

For a classification problem, usually we wish to use as less variables as possible because of diffi-
culties brought by the high dimension. This function has provided an illustration of the process of
finding out the optimum number of variables using k-fold cross-validation in a linear discriminant
analysis (LDA).

Usage

cv.nfeaturesLDA(data = matrix(rnorm(600), 60), cl = gl(3, 20),
k = 5, cex.rg = c(0.5, 3), col.av = c("blue", "red"))

http://animation.yihui.name/dmml:k-fold_cross-validation
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Arguments

data a data matrix containg the predictors in columns

cl a factor indicating the classification of the rows of data

k the number of folds

cex.rg the range of the magnification to be used to the points in the plot

col.av the two colors used to respectively denote rates of correct predictions in the i-th
fold and the average rates for all k folds

Details

The procedure is like this:

• Split the whole data randomly into k folds:

– For the number of features g = 1, 2, · · · , gmax, choose g features that have the largest
discriminatory power (measured by the F-statistic in ANOVA):

* For the fold i (i = 1, 2, · · · , k):
· Train a LDA model without the i-th fold data, and predict with the i-th fold for a

proportion of correct predictions pgi;
– Average the k proportions to get the correct rate pg;

• Determine the optimum number of features with the largest p.

Note that gmax is set by ani.options("nmax").

Value

A list containing

accuracy a matrix in which the element in the i-th row and j-th column is the rate of correct
predictions based on LDA, i.e. build a LDA model with j variables and predict
with data in the i-th fold (the test set)

optimum the optimum number of features based on the cross-validation

Author(s)

Yihui Xie

References

Maindonald J, Braun J (2007). Data Analysis and Graphics Using R - An Example-Based Approach.
Cambridge University Press, 2nd edition. pp. 400

http://animation.yihui.name/da:biostat:select_features_via_cv

See Also

kfcv, cv.ani, lda

http://animation.yihui.name/da:biostat:select_features_via_cv
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Examples

op = par(pch = 19, mar = c(3, 3, 0.2, 0.7), mgp = c(1.5, 0.5, 0))
cv.nfeaturesLDA()
par(op)

## Not run:

# save the animation in HTML pages
oopt = ani.options(ani.height = 480, ani.width = 600, outdir = getwd(),

interval = 0.5, nmax = 10,
title = "Cross-validation to find the optimum number of features in LDA",
description = "This animation has provided an illustration of the process of
finding out the optimum number of variables using k-fold cross-validation
in a linear discriminant analysis (LDA).")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0), tcl = -0.3, pch = 19, cex = 1.5)
cv.nfeaturesLDA()
ani.stop()
ani.options(oopt)

## End(Not run)

flip.coin Probability in flipping coins

Description

In the first class of learning probability theory, we usually begin with flipping coins or tossing dice.
This function provides a simulation to such a process and computes the frequency for ‘heads’ and
‘tails’.

Usage

flip.coin(faces = 2, prob = NULL, border = "white", grid = "white",
col = 1:2, type = "p", pch = 21, bg = "transparent",
digits = 3)

Arguments

faces an integer or a character vector. See details below.

prob the probability vector of showing each face. If NULL, each face will be shown
in the same probability.

border The border style for the rectangles which stand for probabilities.

grid the color for horizontal grid lines in these rectangles

col The colors to annotate different faces of the ‘coin’.
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type, pch, bg
See points.

digits integer indicating the precision to be used in the annotation of frequencies in the
plot

Details

If faces is a single integer, say 2, a sequence of integers from 1 to faces will be used to denote
the faces of a coin; otherwise this character vector just gives the names of each face.

When the i-th face shows up, a colored thin rectangle will be added to the corresponding place (the
i-th bar), and there will be corresponding annotations for the number of tosses and frequencies.

The special argument grid is for consideration of a too large number of flipping, in which case
if you still draw horizontal lines in these rectangles, the rectangles will be completely covered by
these lines, thus we should specify it as NA.

At last the frequency for each face will be computed and shown in the header of the plot – this shall
be close to prob if nmax is large enough.

Value

A list containing

freq A vector of frequencies (simulated probabilities)

nmax the total number of tosses

Note

You may change the colors of each face using the argument col (repeated if shorter than the number
of faces).

Author(s)

Yihui Xie

References

http://animation.yihui.name/prob:flipping_coins

See Also

ani.start, ani.stop

Examples

oopt = ani.options(interval = 0.2, nmax = 100)
# a coin would stand on the table?? just kidding :)
flip.coin(faces = c("Head", "Stand", "Tail"), type = "n",

prob = c(0.45, 0.1, 0.45), col =c(1, 2, 4))

flip.coin(bg = "yellow")

http://animation.yihui.name/prob:flipping_coins
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## Not run:

# HTML animation page
ani.options(ani.height = 500, ani.width = 600, outdir = getwd(), interval = 0.2,

nmax = 50, title = "Probability in flipping coins",
description = "This animation has provided a simulation of flipping coins,
which might be helpful in understanding the concept of probability.")

ani.start()
par(mar = c(2, 3, 2, 1.5), mgp = c(1.5, 0.5, 0))
flip.coin(faces = c("Head", "Stand", "Tail"), type = "n",

prob = c(0.45, 0.1, 0.45), col =c(1, 2, 4))
ani.stop()
## End(Not run)
ani.options(oopt)

grad.desc Gradient Descent Algorithm for the 2D Case

Description

This function has provided a visual illustration for the process of minimizing a real-valued function
through Gradient Descent Algorithm.

Usage

grad.desc(FUN = function(x, y) x^2 + 2 * y^2, rg = c(-3, -3, 3, 3),
init = c(-3, 3), gamma = 0.05, tol = 0.001, len = 50,
interact = FALSE)

Arguments

FUN the objective function to be minimized; contains only two independent variables
(variable names do not need to be ’x’ and ’y’)

rg ranges for independent variables to plot contours; in a c(x0, y0, x1, y1)
form

init starting values

gamma size of a step

tol tolerance to stop the iterations, i.e. the minimum difference between F (xi) and
F (xi+1)

len desired length of the independent sequences (to compute z values for contours)

interact logical; whether choose the starting values by cliking on the contour plot di-
rectly?
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Details

Gradient descent is an optimization algorithm. To find a local minimum of a function using gradient
descent, one takes steps proportional to the negative of the gradient (or the approximate gradient)
of the function at the current point. If instead one takes steps proportional to the gradient, one
approaches a local maximum of that function; the procedure is then known as gradient ascent.

The arrows are indicating the result of iterations and the process of minimization; they will go to a
local minimum in the end if the maximum number of iterations (nmax in control) has not been
reached.

Value

A list containing

par the solution for the local minimum

value the value of the objective function corresponding to par

iter the number of iterations; if it is equal to control$nmax, it’s quite likely that
the solution is not reliable because the maximum number of iterations has been
reached

gradient the gradient function of the objective function; it is returned by deriv

persp a function to make the perspective plot of the objective function; can accept
further arguments from persp (see the examples below)

Note

Please make sure the function FUN provided is differentiable at init, what’s more, it should also
be ’differentiable’ using deriv (see the help file)!

If the arrows cannot reach the local minimum, the maximum number of iterations nmax in ani.options
may be increased.

Author(s)

Yihui Xie

References

http://en.wikipedia.org/wiki/Gradient_descent

http://animation.yihui.name/compstat:gradient_descent_algorithm

See Also

deriv, persp, contour, optim

http://en.wikipedia.org/wiki/Gradient_descent
http://animation.yihui.name/compstat:gradient_descent_algorithm
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Examples

# default example
oopt = ani.options(interval = 0.3, nmax = 50)
xx = grad.desc()
xx$par # solution
xx$persp(col = "lightblue", phi = 30) # perspective plot

## Not run:

# define more complex functions; a little time-consuming
f1 = function(x, y) x^2 + 3 * sin(y)
xx = grad.desc(f1, pi * c(-2, -2, 2, 2), c(-2 * pi, 2))
xx$persp(col = "lightblue", theta = 30, phi = 30)
# or
ani.options(interval = 0, nmax = 200)
f2 = function(x, y) sin(1/2 * x^2 - 1/4 * y^2 + 3) *

cos(2 * x + 1 - exp(y))
xx = grad.desc(f2, c(-2, -2, 2, 2), c(-1, 0.5),

gamma = 0.1, tol = 1e-04)
# click your mouse to select a start point
xx = grad.desc(f2, c(-2, -2, 2, 2), interact = TRUE,

tol = 1e-04)
xx$persp(col = "lightblue", theta = 30, phi = 30)

# HTML animation pages
ani.options(ani.height = 500, ani.width = 500, outdir = getwd(), interval = 0.3,

nmax = 50, title = "Demonstration of the Gradient Descent Algorithm",
description = "The arrows will take you to the optimum step by step.")

ani.start()
grad.desc()
ani.stop()

## End(Not run)
ani.options(oopt)

highlight.def Create R definition file for the software Highlight

Description

The default definition file for R in Highlight is somewhat incomplete, and this function is to dynam-
ically generate such a file according to packages in the search path.

Usage

highlight.def(file = "r.lang")

Arguments

file the path of the output definition file.
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Details

First all the functions are listed out by ls; then some constants and operators are removed from this
long list; at last these characters are written into the ‘file’.

Value

None.

Author(s)

Yihui Xie

References

Highlight by Andre Simon: http://www.andre-simon.de/

See Also

ls, cat

Examples

# generate the definition file in getwd()
highlight.def()

# include functions in package 'animation'
library(animation)
highlight.def()

kfcv Sample sizes for k-fold cross-validation

Description

Compute sample sizes for k-fold cross-validation.

Usage

kfcv(k, N)

Arguments

k number of groups.

N total sample size.

http://www.andre-simon.de/
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Details

If N/k is an integer, the sample sizes are k ‘N/k’s (N/k, N/k, ...), otherwise the remainder will be
allocated to each group as ‘uniformly’ as possible, and at last these sample sizes will be permuted
randomly.

Value

A vector of length k containing k sample sizes.

Author(s)

Yihui Xie

See Also

cv.ani

Examples

# divisible
kfcv(5, 25)

# not divisible
kfcv(10,77)

kmeans.ani Demonstration of K-Means Cluster Algorithm

Description

K-Means cluster algorithm may be regarded as a series of iterations of: finding cluster centers,
computing distances between sample points, and redefining cluster membership. This function
provides a demo of K-Means cluster algorithm for data containing only two variables (columns).

Usage

kmeans.ani(x = matrix(runif(100), ncol = 2,
dimnames = list(NULL, c("X1", "X2"))), centers = 3, pch = 1:3,
col = 1:3, hints = c("Move centers!", "Find cluster?"))

Arguments

x A numercal matrix or an object that can be coerced to such a matrix (such as
a numeric vector or a data frame with all numeric columns) containing only 2
columns.

centers Either the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres.
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pch, col Symbols and colors for different clusters; the length of these two arguments
should be equal to the number of clusters, or they will be recycled.

hints Two text strings indicating the steps of k-means clustering: move the center or
find the cluster membership?

Details

The data given by x is clustered by the k-means method, which aims to partition the points into k
groups such that the sum of squares from points to the assigned cluster centers is minimized. At the
minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points which are
nearest to the cluster centre).

Value

A list with components

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centers.

Note

For practical applications please refer to kmeans.

Note that nmax is defined as the maximum number of iterations in such a sense: an iteration
includes the process of computing distances, redefining membership and finding centers. Thus
there should be 2*nmax animation frames in the output if the other condition for stopping the
iteration has not yet been met (i.e. the cluster membership will not change any longer).

Author(s)

Yihui Xie

References

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100-108.

http://animation.yihui.name/mvstat:k-means_cluster_algorithm

See Also

kmeans

Examples

#set larger 'interval' if the speed is too fast
oopt = ani.options(interval = 2, nmax = 50)
op = par(mar = c(3, 3, 1, 1.5), mgp = c(1.5, 0.5, 0))
kmeans.ani()

ani.options(nmax = 50)
# the kmeans() example; very fast to converge!

http://animation.yihui.name/mvstat:k-means_cluster_algorithm
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x = rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

colnames(x) = c("x", "y")
kmeans.ani(x, centers = 2)

# what if we cluster them into 3 groups?
ani.options(nmax = 50)
kmeans.ani(x, centers = 3)

par(op)
## Not run:

# create HTML animation page
ani.options(ani.height = 480, ani.width = 480, outdir = getwd(), interval = 2,

nmax = 50, title = "Demonstration of the K-means Cluster Algorithm",
description = "Move! Average! Cluster! Move! Average! Cluster! ...")

ani.start()
par(mar = c(3, 3, 1, 1.5), mgp = c(1.5, 0.5, 0))
cent = 1.5 * c(1, 1, -1, -1, 1, -1, 1, -1); x = NULL
for (i in 1:8) x = c(x, rnorm(25, mean = cent[i]))
x = matrix(x, ncol = 2)
colnames(x) = c("X1", "X2")
kmeans.ani(x, centers = 4, pch = 1:4, col = 1:4)
ani.stop()

## End(Not run)
ani.options(oopt)

knn.ani Demonstrate kNN classification algorithm on the 2D plane

Description

Demonstrate the process of k-Nearest Neighbour classification on the 2D plane.

Usage

knn.ani(train, test, cl, k = 10, interact = FALSE,
tt.col = c("blue", "red"), cl.pch = seq_along(unique(cl)),
dist.lty = 2, dist.col = "gray", knn.col = "green")

Arguments

train matrix or data frame of training set cases containing only 2 columns

test matrix or data frame of test set cases. A vector will be interpreted as a row
vector for a single case. It should also contain only 2 columns. This data set will
be ignored if interact = TRUE; see interact below.

cl factor of true classifications of training set

k number of neighbours considered.



knn.ani 31

interact logical. If TRUE, the user will have to choose a test set for himself using mouse
click on the screen; otherwise compute kNN classification based on argument
test.

tt.col a vector of length 2 specifying the colors for the training data and test data.

cl.pch a vector specifying symbols for each class
dist.lty, dist.col

the line type and color to annotate the distances

knn.col the color to annotate the k-nearest neighbour points using a polygon

Details

For each row of the test set, the k nearest (in Euclidean distance) training set vectors are found, and
the classification is decided by majority vote, with ties broken at random. For a single test sample
point, the basic steps are:

1. locate the test point

2. compute the distances between the test point and all points in the training set

3. find k shortest distances and the corresponding training set points

4. vote for the result (find the maximum in the table for the true classifications)

As there are four steps in an iteration, the total number of animation frames should be 4 * min(ani.options("nmax"),
nrow(test)) at last.

Value

A vector of class labels for the test set.

Note

There is a special restriction (only two columns) on the training and test data set just for sake of the
convenience for making a scatterplot. This is only a rough demonstration; for practical applications,
please refer to existing kNN functions such as knn in class, etc.

If either one of train and test is missing, there’ll be random matrices prepared for them. (It’s
the same for cl.)

Author(s)

Yihui Xie

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

http://animation.yihui.name/dmml:k-nearest_neighbour_algorithm

See Also

knn

http://animation.yihui.name/dmml:k-nearest_neighbour_algorithm
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Examples

## a binary classification problem
oopt = ani.options(interval = 2, nmax = 10)
x = matrix(c(rnorm(80, mean = -1), rnorm(80, mean = 1)),

ncol = 2, byrow = TRUE)
y = matrix(rnorm(20, mean = 0, sd = 1.2), ncol = 2)
knn.ani(train = x, test = y, cl = rep(c("first class", "second class"),

each = 40), k = 30)

x = matrix(c(rnorm(30, mean = -2), rnorm(30, mean = 2),
rnorm(30, mean = 0)), ncol = 2, byrow = TRUE)

y = matrix(rnorm(20, sd = 2), ncol = 2)
knn.ani(train = x, test = y, cl = rep(c("first", "second", "third"),

each = 15), k = 25, cl.pch = c(2, 3, 19), dist.lty = 3)

## Not run:
# an interactive demo: choose the test set by mouse-clicking
ani.options(nmax = 5)
knn.ani(interact = TRUE)

ani.options(ani.height = 500, ani.width = 600, outdir = getwd(), nmax = 10,
interval = 2, title = "Demonstration for kNN Classification",
description = "For each row of the test set, the k nearest (in Euclidean
distance) training set vectors are found, and the classification is
decided by majority vote, with ties broken at random.")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0))
knn.ani()
ani.stop()

## End(Not run)
ani.options(oopt)

lln.ani Demonstration of Law of Large Numbers

Description

This function plots the sample mean as the sample size grows to check whether the sample mean
approaches to the population mean.

Usage

lln.ani(FUN = rnorm, mu = 0, np = 30, pch = 20, col.poly = "bisque",
col.mu = "gray", ...)
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Arguments

FUN a function to generate random numbers from a certain distribution: function(n,
mu)

mu population mean; passed to FUN

np times for sampling from a distribution (not the sample size!); to examine the
behaviour of the sample mean, we need more times of sampling to get a series
of mean values

pch symbols for points; see Details

col.poly the color of the polygon to annotate the range of sample means

col.mu the color of the horizontal line which denotes the population mean

... other arguments passed to points

Details

np points are plotted to denote the distribution of the sample mean; we will observe that the range
of the sample mean just becomes smaller and smaller as the sample size increases and ultimately
there will be an obvious trend that the sample mean converges to the population mean mu.

The parameter nmax in ani.options means the maximum sample size.

Value

None (invisible ‘NULL’).

Note

The argument pch will influence the speed of plotting, and for a very large sample size (say, 300),
it is suggested that this argument be specified as ’.’.

Author(s)

Yihui Xie

References

George Casella and Roger L. Berger. Statistical Inference. Duxbury Press, 2th edition, 2001.

http://animation.yihui.name/prob:law_of_large_numbers

Examples

oopt = ani.options(interval = 0.01, nmax = 150)
lln.ani(pch = ".")

# chi-square distribution; population mean = df
lln.ani(function(n, mu) rchisq(n, df = mu), mu = 5, cex = 0.6)

## Not run:

http://animation.yihui.name/prob:law_of_large_numbers
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# save the animation in HTML pages
ani.options(ani.height = 480, ani.width = 600, outdir = getwd(), nmax = 100,

interval = 0.1, title = "Demonstration of the Law of Large Numbers",
description = "The sample mean approaches to the population mean as
the sample size n grows.")

ani.start()
par(mar = c(3, 3, 1, 0.5), mgp = c(1.5, 0.5, 0))
lln.ani(cex = 0.6)
ani.stop()

## End(Not run)
ani.options(oopt)

mwar.ani Demonstration for “Moving Window Auto-Regression”

Description

This function just fulfills a very naive idea about moving window regression using rectangles to
denote the “windows” and move them, and the corresponding AR(1) coefficients as long as rough
confidence intervals are computed for data points inside the “windows” during the process of mov-
ing.

Usage

mwar.ani(x, k = 15, conf = 2, mat = matrix(1:2,
2), widths = rep(1, ncol(mat)), heights = rep(1, nrow(mat)),
lty.rect = 2, ...)

Arguments

x univariate time-series (a single numerical vector); default to be sin(seq(0,
2 * pi, length = 50)) + rnorm(50, sd = 0.2)

k an integer of the window width

conf a positive number: the confidence intervals are computed as [ar1 - conf*s.e., ar1
+ conf*s.e.]

mat, widths, heights
arguments passed to layout to divide the device into 2 parts

lty.rect the line type of the rectangles respresenting the moving “windows”

... other arguments passed to points in the bottom plot (the centers of the arrows)

Details

The AR(1) coefficients are computed by arima.
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Value

A list containing

phi the AR(1) coefficients

L lower bound of the confidence interval

U upper bound of the confidence interval

Author(s)

Yihui Xie

References

Robert A. Meyer, Jr. Estimating coefficients that change over time. International Economic Review,
13(3):705-710, 1972.

http://animation.yihui.name/ts:moving_window_ar

See Also

arima

Examples

# moving window along a sin curve
oopt = ani.options(interval = 0.1, nmax = 50)
op = par(mar = c(2, 3, 1, 0.5), mgp = c(1.5, 0.5, 0))
mwar.ani(lty.rect = 3, pch = 21, col = "red", bg = "yellow",type='o')

# for the data 'pageview'
ani.options(interval = 0.1, nmax = 50)
data(pageview)
mwar.ani(pageview$visits, k = 30)

par(op)
## Not run:

# HTML animation page
ani.options(ani.height = 500, ani.width = 600, outdir = getwd(), nmax = 50,

title = "Demonstration of Moving Window Auto-Regression",
description = "Compute the AR(1) coefficient for the data in the
window and plot the confidence intervals. Repeat this step as the
window moves.")

ani.start()
par(mar = c(2, 3, 1, 0.5), mgp = c(1.5, 0.5, 0))
mwar.ani(lty.rect = 3, pch = 21, col = "red", bg = "yellow",type='o')
ani.stop()

## End(Not run)
ani.options(oopt)

http://animation.yihui.name/ts:moving_window_ar
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newton.method Demonstration of the Newton-Raphson Method for Root-finding

Description

Newton’s method (also known as the Newton-Raphson method or the Newton-Fourier method) is
an efficient algorithm for finding approximations to the zeros (or roots) of a real-valued function
f(x). This function provides an illustration of the iterations in Newton’s method.

Usage

newton.method(FUN = function(x) x^2 - 4, init = 10, rg = c(-1, 10),
tol = 0.001, interact = FALSE, col.lp = c("blue", "red", "red"),
main, xlab, ylab, ...)

Arguments

FUN the function in the equation to solve (univariate)

init the starting point

rg the range for plotting the curve

tol the desired accuracy (convergence tolerance)

interact logical; whether choose the starting point by cliking on the curve (for 1 time)
directly?

col.lp a vector of length 3 specifying the colors of: vertical lines, tangent lines and
points

main, xlab, ylab
titles of the plot; there are default values for them (depending on the form of the
function FUN)

... other arguments passed to curve

Details

The iteration goes on in this way:

xk+1 = xk − FUN(xk)
FUN ′(xk)

From the starting value x0, vertical lines and points are plotted to show the location of the se-
quence of iteration values x1, x2, . . .; tangent lines are drawn to illustrate the relationship between
successive iterations; the iteration values are in the right margin of the plot.
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Value

A list containing

root the root found by the algorithm

value the value of FUN(root)

iter number of iterations; if it is equal to control$nmax, it’s quite likely that the
root is not reliable because the maximum number of iterations has been reached

Note

The algorithm might not converge – it depends on the starting value. See the examples below.

Author(s)

Yihui Xie

References

http://en.wikipedia.org/wiki/Newton’s_method

See Also

optim

Examples

oopt = ani.options(interval = 1, nmax = 50)
op = par(pch = 20)

# default example
xx = newton.method()
xx$root # solution

# take a long long journey
newton.method(function(x) 5 * x^3 - 7 * x^2 - 40 *

x + 100, 7.15, c(-6.2, 7.1))

## Not run:

# another function
xx = newton.method(function(x) exp(-x) * x, rg = c(0,

10), init = 2)
# not converge!
xx = newton.method(function(x) atan(x), rg = c(-5,

5), init = 1.5)
xx$root # Inf
# interaction: use your mouse to select the starting point
xx = newton.method(function(x) atan(x), rg = c(-2,

http://en.wikipedia.org/wiki/Newton's_method
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2), interact = TRUE)

# HTML animation pages
ani.options(ani.height = 500, ani.width = 600, outdir = getwd(), nmax = 100,

interval = 1, title = "Demonstration of the Newton-Raphson Method",
description = "Go along with the tangent lines and iterate.")

ani.start()
par(mar = c(3, 3, 1, 1.5), mgp = c(1.5, 0.5, 0), pch = 19)
newton.method(function(x) 5 * x^3 - 7 * x^2 - 40 *

x + 100, 7.15, c(-6.2, 7.1), main = "")
ani.stop()

## End(Not run)
par(op)
ani.options(oopt)

pageview Data of page view from Sep 21, 2007 for Yihui’s website

Description

Page view data for Yihui’s website from Sep 21, 2007 to a recent date.

Usage

data(pageview)

Format

A data frame with 73 observations on the following 5 variables.

day Date starts from Sep 21, 2007 to a recent date.

visits number of visits: a new visit is defined as each new incoming visitor (viewing or browsing
a page) who was not connected to the site during last 60 min.

pages number of times a page of the site is viewed (sum for all visitors for all visits). This piece
of data differs from “files” in that it counts only HTML pages and excludes images and other
files.

files number of times a page, image, file of the site is viewed or downloaded by someone.

bandwidth amount of data downloaded by all pages, images and files within the site (units in
MegaBytes).

Details

The data is collected by Awstats for the website http://www.yihui.name.

Source

http://www.yihui.name/cgi-bin/awstats/awstats.pl?month=10\&year=2007\
&output=main\&config=yihuiname\&framename=index

http://www.yihui.name
http://www.yihui.name/cgi-bin/awstats/awstats.pl?month=10&year=2007&output=main&config=yihuiname&framename=index
http://www.yihui.name/cgi-bin/awstats/awstats.pl?month=10&year=2007&output=main&config=yihuiname&framename=index
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Examples

data(pageview)
plot(pageview[,1:2], type = "b", col = "red",
main = "Number of Visits in Yihui's Web")

# partial auto-correlation
pacf(pageview$visits)

sample.cluster Demonstration for cluster sampling

Description

Every rectangle stands for a cluster, and the simple random sampling without replacement is per-
formed for each cluster. All points in the clusters being sampled will be drawn out.

Usage

sample.cluster(pop = ceiling(10 * runif(10, 0.2, 1)), size = 3,
p.col = c("blue", "red"), p.cex = c(1, 3), ...)

Arguments

pop a vector for the size of each cluster in the population.

size the number of clusters to be drawn out.

p.col, p.cex different colors / magnification rate to annotate the population and the sample

... other arguments passed to rect to annotate the “clusters”

Value

None (invisible ‘NULL’).

Author(s)

Yihui Xie

References

Cochran, W G (1977) Sampling Techniques, Wiley, ISBN 0-471-16240-X

http://animation.yihui.name/samp:cluster_sampling

See Also

sample

http://animation.yihui.name/samp:cluster_sampling
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Examples

oopt = ani.options(interval = 1, nmax = 30)
op = par(mar = rep(1, 4))
sample.cluster(col = c("bisque", "white"))
par(op)
## Not run:

# HTML animation page
ani.options(ani.height = 350, ani.width = 500, outdir = getwd(), nmax = 30,

interval = 1, title = "Demonstration of the cluster sampling",
description = "Once a cluster is sampled, all its elements will be
chosen.")

ani.start()
par(mar = rep(1, 4), lwd = 2)
sample.cluster(col = c("bisque", "white"))
ani.stop()

## End(Not run)
ani.options(oopt)

sample.simple Demonstration for simple random sampling without replacement

Description

The whole sample frame is denoted by a matrix (nrow * ncol) in the plane just for convenience,
and the points being sampled are marked out (by red circles by default). Each member of the
population has an equal and known chance of being selected.

Usage

sample.simple(nrow = 10, ncol = 10, size = 15, p.col = c("blue", "red"),
p.cex = c(1, 3))

Arguments

nrow the desired number of rows of the sample frame.

ncol the desired number of columns of the sample frame.

size the sample size.

p.col, p.cex different colors /magnification rate to annotate the population and the sample

Value

None (invisible ‘NULL’).
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Author(s)

Yihui Xie

References

Cochran, W G (1977) Sampling Techniques, Wiley, ISBN 0-471-16240-X

http://animation.yihui.name/samp:srswr

See Also

sample

Examples

oopt = ani.options(interval = 1, nmax = 30)
op = par(mar = rep(1, 4))
sample.simple()
par(op)
## Not run:

# HTML animation page
ani.options(ani.height = 350, ani.width = 500, outdir = getwd(), nmax = 30,

interval = 1,
title = "Demonstration of the simple random sampling without replacement",
description = "Each member of the population has an equal and known chance
of being selected.")

ani.start()
par(mar = rep(1, 4), lwd = 2)
sample.simple()
ani.stop()

## End(Not run)
ani.options(oopt)

sample.strat Demonstration for stratified sampling

Description

Every rectangle stands for a stratum, and the simple random sampling without replacement is per-
formed within each stratum. The points being sampled are marked out (by red circles by default).

Usage

sample.strat(pop = ceiling(10 * runif(10, 0.5, 1)),
size = ceiling(pop * runif(length(pop), 0, 0.5)),
p.col = c("blue", "red"), p.cex = c(1, 3), ...)

http://animation.yihui.name/samp:srswr
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Arguments

pop a vector for the size of each stratum in the population.

size a corresponding vector for the sample size in each stratum (recycled if neces-
sary).

p.col, p.cex different colors /magnification rate to annotate the population and the sample

... other arguments passed to rect to annotate the “strata”

Value

None (invisible ‘NULL’).

Author(s)

Yihui Xie

References

Cochran, W G (1977) Sampling Techniques, Wiley, ISBN 0-471-16240-X

See Also

sample

Examples

oopt = ani.options(interval = 1, nmax = 30)
op = par(mar = rep(1, 4), lwd = 2)
sample.strat(col = c("bisque", "white"))
par(op)
## Not run:

# HTML animation page
ani.options(ani.height = 350, ani.width = 500, outdir = getwd(), nmax = 30,

interval = 1, title = "Demonstration of the stratified sampling",
description = "Every rectangle stands for a stratum, and the simple
random sampling without replacement is performed within each stratum.")

ani.start()
par(mar = rep(1, 4), lwd = 2)
sample.strat(col = c("bisque", "white"))
ani.stop()

## End(Not run)
ani.options(oopt)
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sample.system Demonstration for systematic sampling

Description

The whole sample frame is denoted by a matrix (nrow * ncol) in the plane, and the sample
points with equal intervals are drawn out according to a random starting point. The points being
sampled are marked by red circles.

Usage

sample.system(nrow = 10, ncol = 10, size = 15,
p.col = c("blue", "red"), p.cex = c(1, 3))

Arguments

nrow the desired number of rows of the sample frame.

ncol the desired number of columns of the sample frame.

size the sample size.

p.col, p.cex different colors / magnification rate to annotate the population and the sample

Value

None (invisible ‘NULL’).

Author(s)

Yihui Xie

References

Cochran, W G (1977) Sampling Techniques, Wiley, ISBN 0-471-16240-X

See Also

sample

Examples

oopt = ani.options(interval = 1, nmax = 30)
op = par(mar = rep(1, 4), lwd = 2)
sample.system()
par(op)
## Not run:

# HTML animation page
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ani.options(ani.height = 350, ani.width = 500, outdir = getwd(), nmax = 30,
interval = 1, title = "Demonstration of the systematic sampling",
description = "Sampling with equal distances.")

ani.start()
par(mar = rep(1, 4), lwd = 2)
sample.system()
ani.stop()

## End(Not run)
ani.options(oopt)

saveMovie Convert Images to A Single Animated Movie

Description

This function opens a graphical device first to generate a sequence of images based on expr,
then makes use of the command convert in ‘ImageMagick’ to convert these images to a single
animated movie (in formats such as GIF and MPG, etc).

Usage

saveMovie(expr, interval = 1, moviename = "movie", movietype = "gif",
loop = 0, dev = png, filename = "Rplot", fmt = "%03d",
outdir = tempdir(), para = par(no.readonly = TRUE), ...)

Arguments

expr an expression to generate animations; use either the animation functions (e.g.
brownian.motion()) in this package or a custom expression (e.g. for(i
in 1:10) plot(runif(10), ylim = 0:1)).

interval duration between animation frames (unit in seconds)

moviename file name of the movie (base only, without extension)

movietype format of the movie (’gif’, ’mpg’, ...; as long as it’s supported by ImageMagick)

loop iterations of the movie; set iterations to zero to repeat the animation an infinite
number of times, otherwise the animation repeats itself up to loop times (N.B.
for GIF only!)

dev a function for a graphical device such as png, jpeg and bmp, etc.

filename file name of the sequence of images (‘pure’ name; without any format or exten-
sion)

fmt a C-style string formatting command, such as %3d

outdir the directory for the movie frames and the movie itself

para a list: the graphics parameters to be set before plotting; passed to par

... other arguments passed to the graphical device, such as height and width,
...
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Details

The convenience of this function is that it can create a single movie file, however, two drawbacks
are obvious too: (1) we need a special (free) software ImageMagick; (2) the speed of the animation
cannot be conveniently controlled, as we have specified a fixed interval. So just go ahead with
this function to create your movies if you don’t mind these two points.

Value

An integer indicating failure (-1) or success (0) of the converting (refer to system).

Note

Please make sure ImageMagick has been installed in your system: http://www.imagemagick.
org

Author(s)

Yihui Xie

References

http://www.imagemagick.org/script/convert.php

http://animation.yihui.name/animation:start

See Also

saveSWF, system, png, jpeg and bmp

Examples

## make sure ImageMagick has been installed in your system
## Not run:

saveMovie(for(i in 1:10) plot(runif(10), ylim = 0:1), loop = 1)
oopt = ani.options(interval = 0.05, nmax = 100)
saveMovie(brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow"),

width = 600, height = 600)
ani.options(oopt)
## End(Not run)

http://www.imagemagick.org
http://www.imagemagick.org
http://www.imagemagick.org/script/convert.php
http://animation.yihui.name/animation:start
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saveSWF Convert Images to Flash Animations

Description

This function opens a graphical device first to generate a sequence of images based on expr, then
makes use of the commands in ‘SWF Tools’ (png2swf, jpeg2swf, pdf2swf) to convert these
images to a single Flash animation.

Usage

saveSWF(expr, interval = 1, swfname = "movie.swf",
dev = c("png", "jpeg", "pdf"), filename = "Rplot", fmt = "%03d",
outdir = tempdir(), swftools = NULL, para = par(no.readonly = TRUE), ...)

Arguments

expr an expression to generate animations; use either the animation functions (e.g.
brownian.motion()) in this package or a custom expression (e.g. for(i
in 1:10) plot(runif(10), ylim = 0:1)).

interval duration between animation frames (unit in seconds)

swfname file name of the Flash file

dev character: the graphics device to be used. Three choices are available: png,
jpeg and pdf, etc.

filename file name of the sequence of images (‘pure’ name; without any format or exten-
sion)

fmt a C-style string formatting command, such as ‘%3d’

outdir the directory for the animation frames and the Flash file

swftools the path of ‘SWF Tools’, e.g. ‘C:/swftools’. This argument is to make sure that
png2swf, jpeg2swf and pdf2swf can be executed correctly. If it is NULL,
it should be guaranteed that these commands can be executed without the path.

para a list: the graphics parameters to be set before plotting; passed to par

... other arguments passed to the graphical device, such as height and width,
...

Value

An integer indicating failure (-1) or success (0) of the converting (refer to system).

Note

Please download the SWF Tools before using this function: http://www.swftools.org

Author(s)

Yihui Xie

http://www.swftools.org
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References

http://animation.yihui.name/animation:start#create_flash_animations

See Also

saveMovie, system, png, jpeg, pdf

Examples

## Not run:
oopt = ani.options(interval = 0, nmax = 50)
# from png
saveSWF(knn.ani(test = matrix(rnorm(16), ncol = 2),

cl.pch = c(16, 2)), 1.5, dev = "png", para = list(mar = c(3,
3, 1, 1.5), mgp = c(1.5, 0.5, 0)), swfname = "kNN.swf")

# from pdf (vector plot!)
ani.options(interval = 0, nmax = 50)
saveSWF(brownian.motion(pch = 21, cex = 5, col = "red", bg = "yellow"),

0.2, "brownian.swf", "pdf", fmt = "")

ani.options(oopt)
## End(Not run)

tidy.source ‘Tidy up’ R code

Description

Actually this function has nothing to do with code optimization; it just returns parsed source code.

Usage

tidy.source(source = "clipboard", ...)

Arguments

source a string: location of the source code

... other arguments passed to cat, e.g. file

Details

This function helps the user to tidy up his source code in a sense that necessary indents and spaces
will be added, etc. See parse.

Value

None (invisible ‘NULL’). ‘Clean’ code will be returned to the console unless the output is redirected
by ‘sink’.

http://animation.yihui.name/animation:start#create_flash_animations
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Author(s)

Yihui Xie

References

http://animation.yihui.name/animation:misc#tidy_up_r_source

See Also

parse, cat

Examples

## tidy up the source code of image demo
x = file.path(system.file(package = "graphics"), "demo", "image.R")
# to console
tidy.source(x)
# to a file
tidy.source(x, file = tempfile())
## check the original code here and see the difference
file.show(x)

## if you've copied R code into the clipboard
## Not run:
tidy.source("clipboard")
## End(Not run)

vi.grid.illusion Visual Illusions: Scintillating grid illusion and Hermann grid illusion

Description

A grid illusion is any kind of grid that deceives a person’s vision. The two most common types
of grid illusions are Hermann grid illusions and Scintillating grid illusions. This function provides
illustrations for both illusions.

Usage

vi.grid.illusion(nrow = 8, ncol = 8, lwd = 8, cex = 3,
col = "darkgray", type = c("s", "h"))

Arguments

nrow number of rows for the grid

ncol number of columns for the grid

lwd line width for grid lines

cex magnification for points in Scintillating grid illusions

http://animation.yihui.name/animation:misc#tidy_up_r_source
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col color for grid lines

type type of illusions: ’s’ for Scintillating grid illusions and ’h’ for Hermann grid
illusions

Details

This is actually a static image; pay attention to the intersections of the grid and there seems to be
some moving points (non-existent in fact).

Value

None.

Note

In fact there isn’t any animation!

Author(s)

Yihui Xie

References

http://en.wikipedia.org/wiki/Grid_illusion

http://animation.yihui.name/animation:misc#visual_illusions

See Also

points, abline

Examples

# default to be Scintillating grid illusions
vi.grid.illusion()

# set wider lines to see Hermann grid illusions
vi.grid.illusion(type = "h", lwd = 22, nrow = 5, ncol = 5,

col = "white")

http://en.wikipedia.org/wiki/Grid_illusion
http://animation.yihui.name/animation:misc#visual_illusions
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vi.lilac.chaser Visual Illusions: Lilac Chaser

Description

Stare at the center cross for a few (say 30) seconds to experience the phenomena of the illusion.

Usage

vi.lilac.chaser(np = 16, col = "magenta", bg = "gray", p.cex = 7, c.cex = 5)

Arguments

np number of points

col color of points

bg background color of the plot

p.cex magnification of points

c.cex magnification of the center cross

Details

Just try it out.

Value

None.

Note

In fact, points in the original version of ‘Lilac Chaser’ are blurred, which is not implemented in this
function. If you have any idea, please contact me.

Author(s)

Yihui Xie

References

http://en.wikipedia.org/wiki/Lilac_chaser

http://animation.yihui.name/animation:misc#lilac_chaser

See Also

points

http://en.wikipedia.org/wiki/Lilac_chaser
http://animation.yihui.name/animation:misc#lilac_chaser
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Examples

oopt = ani.options(interval = 0.05, nmax = 20)
op = par(pty = "s")
vi.lilac.chaser()

## Not run:

# HTML animation page; nmax = 1 is enough!
ani.options(ani.height = 480, ani.width = 480, outdir = getwd(), nmax = 1,

interval = 0.05, title = "Visual Illusions: Lilac Chaser",
description = "Stare at the center cross for a few (say 30) seconds
to experience the phenomena of the illusion.")

ani.start()
par(pty = "s", mar = rep(1, 4))
vi.lilac.chaser()
ani.stop()

## End(Not run)
par(op)
ani.options(oopt)

write.rss Create RSS feed from a CSV data file

Description

An RSS feed is essentially just an XML file, thus the creation is easy just with cat to write some
tags into a text file. The elments of an item in an RSS feed usually contains ’title’, ’link’, ’author’,
’description’, ’pubDate’, ’guid’, and ’category’, etc, which are stored in the CSV data file.

Usage

write.rss(file = "feed.xml", entry = "rss.csv", xmlver = "1.0",
rssver = "2.0", title = "What's New?",
link = "http://R.yihui.name",
description = "Animated Statistics Using R",
language = "en-us", copyright = "Copyright 2007, Yihui Xie",
pubDate = Sys.time(), lastBuildDate = Sys.time(),
docs = "http://R.yihui.name",
generator = "Function write.rss() in R package animation",
managingEditor = "xieyihui[at]gmail.com",
webMaster = "xieyihui[at]gmail.com",
maxitem = 10, ...)

Arguments

file the path of the output file (RSS feed); passed to cat
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entry the input CSV file, containing elements for items in the RSS feed (with tag
names in the header); read.csv

xmlver version of XML

rssver version of RSS

title The name of the channel. It’s how people refer to your service. If you have an
HTML website that contains the same information as your RSS file, the title of
your channel should be the same as the title of your website.

link The URL to the HTML website corresponding to the channel.

description Phrase or sentence describing the channel.

language The language the channel is written in.

copyright Copyright notice for content in the channel.

pubDate The publication date for the content in the channel.
lastBuildDate

The last time the content of the channel changed.

docs A URL that points to the documentation for the format used in the RSS file.

generator A string indicating the program used to generate the channel.
managingEditor

Email address for person responsible for editorial content.

webMaster Email address for person responsible for technical issues relating to channel.

maxitem Maximum number of items to be written into the feed.

... other elements for the channel, e.g. image, cloud, etc.

Details

The items of the RSS feed are stored in the file ‘entry’, and the many arguments above are just for
the channel information.

Value

None. Only a message indicating where the RSS was created.

Note

As the argument file is passed to cat, you may specify it as an empty string "" so that the result
will be printed to the standard output connection, the console unless redirected by ’sink’.

Note the order of items in the CSV file: newer items are added to the end of the file. But this order
will be reversed in the RSS file!

Author(s)

Yihui Xie

References

Read http://cyber.law.harvard.edu/rss/rss.html for the specification of RSS.

http://cyber.law.harvard.edu/rss/rss.html
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See Also

cat, read.csv

Examples

# create rss feed from a sample file in 'animation'
# to getwd()
write.rss(entry = system.file("js", "rss.csv", package = "animation"))

## Not run:

# Read entries from the internet
write.rss(entry = "http://r.yihui.name/news/rss.csv")

## End(Not run)
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